Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Environ Res Public Health ; 20(3)2023 01 29.
Article in English | MEDLINE | ID: covidwho-2216048

ABSTRACT

A growing number of findings indicate a relationship between COVID-19 infection and thyroid dysfunction. This association is also strengthened by knowledge on the potential of viral infections to trigger thyroid disorders, although the exact underlying pathogenetic process remains to be elucidated. This review aimed to describe the available data regarding the possible role of infectious agents, and in particular of SARS-CoV-2, in the development of thyroid disorders, summarizing the proposed mechanisms and levels of evidence (epidemiological, serological or direct presence of the viruses in the thyroid gland) by which the infection could be responsible for thyroid abnormalities/diseases. Novel data on the association and mechanisms involved between SARS-CoV-2 vaccines and thyroid diseases are also discussed. While demonstrating a clear causal link is challenging, numerous clues at molecular and cellular levels and the large amount of epidemiological data suggest the existence of this relationship. Further studies should be taken to further investigate the true nature and strength of this association, to help in planning future preventive and therapeutic strategies for more personal and targeted care with attention to the underlying causes of thyroid dysfunction.


Subject(s)
COVID-19 , Thyroid Diseases , Humans , SARS-CoV-2 , COVID-19 Vaccines , Thyroid Diseases/epidemiology
2.
Antioxidants (Basel) ; 11(10)2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2065678

ABSTRACT

BACKGROUND: Thyroid hormones (TH)s are master regulators of mitochondrial activity and biogenesis. Nonthyroidal illness syndrome (NTIS) is generally considered an adaptative response to reduced energy that is secondary to critical illness, including COVID-19. COVID-19 has been associated with profound changes in the cell energy metabolism, especially in the cells of the immune system, with a central role played by the mitochondria, considered the power units of every cell. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects and alters mitochondrial functions, both to influence its intracellular survival and to evade host immunity. AIM OF THE STUDY: This study was undertaken to analyze the oxidative balance and mitochondrial respiration in COVID-19 patients with and without NTIS to elucidate the role that thyroid hormones (TH)s play in this context. METHODS: In our cohort of 54 COVID-19 patients, admitted to our University Hospital during the COVID-19 pandemic, we evaluated the generation of reactive oxygen species (ROS) by measuring the serum levels of derivatives of reactive oxygen metabolites (dROMs), and we analyzed the antioxidant capacity by measuring the serum biological antioxidant potential (BAP). We then analyzed the mitochondrial respiration in peripheral blood mononuclear cells (PBMC)s of 28 of our COVID-19 patients, using the seahorse instrument (Agilent). Results were correlated with the serum levels of THs and, in particular, of FT3. In addition, the role of T3 on bioelectrical impedance analysis (BIA) and mitochondrial respiration parameters was directly evaluated in two COVID-19 patients with NTIS, in which treatment with synthetic liothyronine (LT3) was given both in vivo and in vitro. RESULTS: In our COVID-19 patients with NTIS, the dROMs values were significantly lower and the BAP values were significantly higher. Consequently, the oxidative stress index (OSi), measured as BAP/dROMs ratio was reduced compared to that observed in COVID-19 patients without NTIS, indicating a protective role exerted by NTIS on oxidative stress. In our COVID-19 patients, the mitochondrial respiration, measured in PBMCs, was reduced compared to healthy controls. Those with NTIS showed a reduced maximal respiratory capacity and a reduced proton leak, compared to those with normal FT3 serum values. Such lowered mitochondrial respiratory capacity makes the cells more vulnerable to bioenergetic exhaustion. In a pilot study involving two COVID-19 patients with NTIS, we could reinforce our previous observation regarding the role of T3 in the maintenance of adequate peripheral hydroelectrolytic balance. In addition, in these two patients, we demonstrated that by treating their PBMCs with LT3, both in vitro and in vivo, all mitochondrial respiration parameters significantly increased. CONCLUSIONS: Our results regarding the reduction in the serum levels of the reactive oxygen species (ROS) of COVID-19 patients with NTIS support the hypothesis that NTIS could represent an adaptative response to severe COVID-19. However, beside this beneficial effect, we demonstrate that, in the presence of an acute reduction of FT3 serum levels, the mitochondrial respiration is greatly impaired, with a consequent establishment of a hypoenergetic state of the immune cells that may hamper their capacity to react to massive viral infection.

3.
Front Endocrinol (Lausanne) ; 13: 850328, 2022.
Article in English | MEDLINE | ID: covidwho-1869368

ABSTRACT

Background and Objective: Nonthyroidal Illness Syndrome (NTIS) occurs in approximately 70% of patients admitted to Intensive Care Units (ICU)s and has been associated with increased risk of death. Whether patients with NTIS should receive treatment with thyroid hormones (TH)s is still debated. Since many interventional randomized clinical trials (IRCT)s were not conclusive, current guidelines do not recommend treatment for these patients. In this review, we analyze the reasons why TH treatment did not furnish convincing results regarding possible beneficial effects in reported IRCTs. Methods: We performed a review of the metanalyses focused on NTIS in critically ill patients. After a careful selection, we extracted data from four metanalyses, performed in different clinical conditions and diseases. In particular, we analyzed the type of TH supplementation, the route of administration, the dosages and duration of treatment and the outcomes chosen to evaluate the results. Results: We observed a marked heterogeneity among the IRCTs, in terms of type of TH supplementation, route of administration, dosages and duration of treatment. We also found great variability in the primary outcomes, such as prevention of neurological alterations, reduction of oxygen requirements, restoration of endocrinological and clinical parameters and reduction of mortality. Conclusions: NTIS is a frequent finding in critical ill patients. Despite several available IRCTs, it is still unclear whether NTIS should be treated or not. New primary endpoints should be identified to adequately validate the efficacy of TH treatment and to obtain a clear answer to the question raised some years ago.


Subject(s)
Euthyroid Sick Syndromes , Critical Illness/therapy , Hospitalization , Humans , Intensive Care Units , Thyroid Hormones/therapeutic use
4.
J Transl Med ; 19(1): 491, 2021 12 03.
Article in English | MEDLINE | ID: covidwho-1551213

ABSTRACT

BACKGROUND: Nonthyroidal Illness Syndrome (NTIS) can be detected in many critical illnesses. Recently, we demonstrated that this condition is frequently observed in COVID-19 patients too and it is correlated with the severity the disease. However, the exact mechanism through which thyroid hormones influence the course of COVID-19, as well as that of many other critical illnesses, is not clear yet and treatment with T4, T3 or a combination of both is still controversial. Aim of this study was to analyze body composition in COVID-19 patients in search of possible correlation with the thyroid function. METHODS AND FINDINGS: We report here our experience performed in 74 critically ill COVID-19 patients hospitalized in the intensive care unit (ICU) of our University Hospital in Rome. In these patients, we evaluated the thyroid hormone function and body composition by Bioelectrical Impedance Analysis (BIA) during the acute phase of the disease at admission in the ICU. To examine the effects of thyroid function on BIA parameters we analyzed also 96 outpatients, affected by thyroid diseases in different functional conditions. We demonstrated that COVID-19 patients with low FT3 serum values exhibited increased values of the Total Body Water/Free Fat Mass (TBW/FFM) ratio. Patients with the lowest FT3 serum values had also the highest level of TBW/FFM ratio. This ratio is an indicator of the fraction of FFM as water and represents one of the best-known body-composition constants in mammals. We found an inverse correlation between FT3 serum values and this constant. Reduced FT3 serum values in COVID-19 patients were correlated with the increase in the total body water (TBW), the extracellular water (ECW) and the sodium/potassium exchangeable ratio (Nae:Ke), and with the reduction of the intracellular water (ICW). No specific correlation was observed in thyroid patients at different functional conditions between any BIA parameters and FT3 serum values, except for the patient with myxedema, that showed a picture similar to that seen in COVID-19 patients with NTIS. Since the Na+/K+ pump is a well-known T3 target, we measured the mRNA expression levels of the two genes coding for the two major isoforms of this pump. We demonstrated that COVID-19 patients with NTIS had lower levels of mRNA of both genes in the peripheral blood mononuclear cells (PBMC)s obtained from our patients during the acute phase of the disease. In addition, we retrieved data from transcriptome analysis, performed on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM)s treated with T3 and we demonstrated that in these cells T3 is able to stimulate the expression of these two genes in a dose-dependent manner. CONCLUSIONS: In conclusion, we demonstrated that measurement of BIA parameters is a useful method to analyze water and salt retention in COVID-19 patients hospitalized in ICU and, in particular, in those that develop NTIS. Our results indicate that NTIS has peculiar similarities with myxedema seen in severe hypothyroid patients, albeit it occurs more rapidly. The Na+/K+ pump is a possible target of T3 action, involved in the pathogenesis of the anasarcatic condition observed in our COVID-19 patients with NTIS. Finally, measurement of BIA parameters may represent good endpoints to evaluate the benefit of future clinical interventional trials, based on the administration of T3 in patients with NTIS.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Animals , Gene Expression , Humans , SARS-CoV-2 , Sodium , Triiodothyronine
5.
Endocr Res ; 47(1): 39-44, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1510751

ABSTRACT

BACKGROUND: Integrin αvß3 is a cell membrane structural protein whose extracellular domain contains a receptor for L-thyroxine (T4). The integrin is expressed in rapidly dividing cells and its internalization is prompted by T4. The protein binds viruses and we have raised the possibility elsewhere that action of free T4 (FT4)-when he latter is increased in the nonthyroidal illness syndrome (NTIS) known to complicate COVID-19 infecction-may enhance cellular uptke of SARS-CoV-2 and its receptor. OBJECTIVE: Because T4 also acts nongenomically via the integrin to promote platelet aggregation and angiogenesis, we suggest here that T4 may contribute to the coagulopathy and endothelial abnormalities that can develop in COVID-19 infections, particularly when the lung is primary affected. DISCUSSION AND CONCLUSIONS: Elevated FT4 has been described in the NTIS of COVID-19 patients and may be associated with increased illness severity, but the finding of FT4 elevation is inconsistent in the NTIS literature. Circulating 3,5',3'-triiodo-L-thyronine (reverse T3, rT3) are frequently elevated in NTIS. Thought to be biologically inactive, rT3in fact stimulates cancer cell proliferation via avb3 and also may increase actin polymerization. We propose here that rT3 in the NTIS complicating systemic COVIF-19 infection may support coagulation and disordered blood vessel formation via actin polymerization.


Subject(s)
COVID-19 , Humans , Integrin alphaVbeta3 , Male , SARS-CoV-2 , Thyroid Hormones , Thyroxine , Triiodothyronine
6.
Endocrine ; 74(3): 455-460, 2021 12.
Article in English | MEDLINE | ID: covidwho-1404667

ABSTRACT

PURPOSE: Inflammation plays a critical role in the progression of COVID-19. Nonthyroidal illness syndrome (NTIS) has been increasingly recognized in affected patients. We aim to evaluate the correlation of thyroid hormones with markers of inflammation and association with disease outcome in hospitalized patients with COVID-19, and in two profiles of NTIS (low T3-normal/low FT4 vs. low T3-high FT4). METHODS: consecutive patients admitted to a nonintensive care unit for COVID-19 were recruited. Infection was mild in 22%, moderate in 27.1% and severe in 50.8%; 7.41% died. T4, T3, FT4, FT3, and their ratios (T3/T4, FT3/FT4) were correlated with albumin, ferritin, fibrinogen, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), lactate dehydrogenase (LDH), and D-dimer. RESULTS: Fifty five patients (50.9% men, median age 56 years) were included. Albumin correlated positively with T3 and hormones ratios, but negatively with FT4. T3, FT3, T3/T4, and FT3/FT4 correlated inversely with ferritin, fibrinogen, ESR, CRP, LDH, and D-dimer. FT4 showed direct correlation with fibrinogen and ESR. T3/T4 was lower in severe compared to mild/moderate disease [7.5 (4.5-15.5) vs. 9.2 (5.8-18.1); p = 0.04], and lower in patients who died than in those discharged [5 (4.53-5.6) vs. 8.1 (4.7-18.1); p = 0.03]. A low T3/high FT4 profile was associated with lower albumin, higher ferritin, and severity. CONCLUSION: In this cohort, thyroid hormones correlated with inflammation and outcome. T3 and T3/T4 correlated inversely with inflammatory markers; a low T3/T4 ratio was associated with severity and poor prognosis. Patients with low T3 but high FT4 had higher ferritin, lower albumin, and more severe disease at presentation.


Subject(s)
COVID-19 , Thyroid Gland , C-Reactive Protein , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Thyroid Hormones , Thyroxine , Triiodothyronine
7.
Endocr Res ; 45(3): 210-215, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1050038

ABSTRACT

BACKGROUND: Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvß3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE: We propose that the cellular internalization of αvß3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS: The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvß3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvß3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvß3 and possibly restrict virus uptake.


Subject(s)
Coronavirus Infections/virology , Integrin alphaVbeta3/metabolism , Porcine epidemic diarrhea virus/metabolism , Receptors, Virus/drug effects , Thyroid Hormones/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Cytokines/physiology , Epithelial Cells/virology , Humans , Oligopeptides/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Swine , Thyroid Hormones/physiology , Thyroxine/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL